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1. Introduction

The spectral composition of the radiant flux
emanating from Earth's surface provides information
about the biological, chemical and physical
properties of soil, water and vegetation in terrestrial
ecosystems. Airborne and satellite remotely sensed
data recorded in optical wavelengths have been used
to classify and map vegetative cover (e.g., Running
et al., 1995; Townshend, 1992; Dungan et al., 1994)
and provide estimates of a wide range of biophysical
variables such as Absorbed Photosynthetically
Active Radiation (APAR) (Gregoire and Raffy,
1994), canopy cover (Bartlett ef al., 1988; Goel, and
Reynolds, 1989), LAI (leaf area index) (Curran, et
al., 1992; Friedl et al., 1994), biomass (Atkinson and
Plummer, 1993;). Remotely sensed data are also
being used to estimate canopy chemistry (Zagolski
et al, 1996) as a result of our need for the
information and our increasing ability to understand
and measure canopy spectra (Curran, 1990).

Image classification refers to a variety of methods
to identify and characterise objects from imagery.
However, the fundamental interactions of radiant
energy with the Earth's surface must be understood
for remote sensing to be applied efficiently. Current
remote sensing techniques enable the successful
classification of land cover in temperate regions of
the world, however, the Mediterranean environment
limits the capability of current remote sensing
techniques. In the area traditional classification
techniques were failed as a result of (i) similarity of
reflectance properties of major land covers which
makes spectral separation difficult and (ii) small and
spatially variable land cover parcels. These
constraints minimised using the synergy of
techniques mentioned above. The first problem was
tackled by utilising Artificial Neural Networks
(ANNs) as a non-statistical approach to spectral
discrimination rather than a conventional statistical
classifier such as ML. A fundamental difference
between these classifiers is statistical approaches
depend on assumed model, whereas ANN approach
depend only on the data. ANNs are one of several
artificial intelligence techniques that have been used

for automate image classification as an alternative to
conventional statistical approaches.

ANN:Ss in their present form were first published
by Rosenblatt (1958) who introduced the concept of
the perceptron. His single perceptron was able to
classify only linearly separable data and this was an
important limitation to its use. Non-linear data
separation was achieved in 1980s as a result of
increased computing power and the development of
algorithms and network topologies. This enabled the
use of ANN for the classification of remotely sensed
imagery (Key er al., 1989; Benediktsson er al.,
1990). Since then, the number of remote sensing
studies using ANN have increased dramatically. It
has been shown that ANN provided more accurate
classification than traditional statistical classifiers
(Benediktsson et al., 1990; Wilkinson et al., 1994)

For the second problem, spatial information is
critical because spectral information alone often
does not recognise adjacent pixels as belonging to
the same vegetation class due to spatial variability.
This wide range in spatial frequencies can be utilised
as a discriminant by land cover classifiers. Land
cover classes may be discriminated according to
their spatial variability in a remotely sensed imagery
where spectral signatures are subtle. Synergy
between spatial variability which means texture and
spectral brightness has a great potential for image
analysis in remote sensing. Spatial variability can be
quantified using a texture measure and this then
combined with spectral data in a classifier. Measures
of texture used were: the variance and statistics
derived from the variogram. A key function of
geostatistics is variogram which relates variance to
spatial separation and provides a concise description
of the scale and pattern of spatial variability. The
variogram is one means of quantifying the way in
which a variable changes spatially. The variogram is
defined as half the expected squared difference
between paired data values separated by the vector,

lag h:

y(h) = %E[{Z(x) - Z(x+h)y]
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The experimental (or sample) variogram is
computed for the p(h) paired observations, z(x;), z(x;
+h), i=1, 2,..., p(h):

. b 1 p(h) " 5
7( )-mg{zv(x,-)—zv(x,- +h)}

where, v is the support (the size, geometry and
orientation) of the area over which measurements
are made. For remotely sensed imagery the lag h is
measured in units of one side of a pixel.

The variogram within a moving window has been
used to quantify texture in remotely sensed imagery
by several researchers (Miranda et al., 1996; Carr,
1996). Miranda et al. (1992) found that variograms
could be used to distinguish effectively between
different land cover classes and increase the
accuracy of classifications. Carr (1996) used the
semivariance and spectral information separately
and in combination in a supervised classification
with several different algorithms. Carr (1996), like
other authors, observed that classification accuracy
was greater when the semivariance was used in
combination with spectral information than when
the latter was used alone. Another approach has been
to use the square root of the difference between
paired observations rather than the semivariance
(half the squared difference) for discriminating land
cover classes (Lark, 1996).

Image texture provided horizontal variation
within the image and vertical variation has been
characterised by DEM which is also valuable
information as the land cover classes strictly
associated with altitude. Synergy of the techniques
mentioned above enabled more accurate
classifications than those obtained using standard
techniques alone. The accuracy figures were derived
using 1000 randomly selected ground control points.
Therefore, this study focused on the techniques that
were likely to help solve existing problems
associated with land cover mapping in the region.

2.Data Processing

The land use of the area is intensive and is
dominated by agricultural, urban and tourist
activities. Diverse environmental structures such as,

geology, soil, climate, hydrology and vegetation
interact strongly with these land use activities. These
interactions have shaped the environment which is
typical of this part of the Mediterranean region. The
major land cover classes are agriculture, bare ground,
grassland, pinus brutia, pinus nigra, cedrus libani,
Abies sp., water, wetland, settlement, snow, bulrush,
sand.

The study benefits from a large and detailed land
cover database derived from four data sources:
Landsat ETM image dated 5 May 2003, topographic
maps, State Hydraulic Works (DSI) land cover
records and ground data from field surveys.

3.Geometric rectification

The image was geometrically corrected and
geocoded to the Universal Transverse Mercator
(UTM) coordinate system by using 1:25,000 scale
topographic maps. 15 regularly distributed ground
control points (GCPs) were selected from the image.
It was then spatially resampled to a spatial resolution
of 30 m. Resampling was done by using a nearest
neighbour algorithm. The transformation had a root
mean square (RMS) error 0.7 indicating that the
image was accurate to within one pixel.

4.Supervised classification

Image classification was carried out using ML and
ANN algorithm with supervised training (Figure 1).
The classifier was provided with the spectral
reflectance properties of each class in the form of the
mean reflectance for each spectral waveband and the
associated covariance matrix. This data was
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Figure 1. Flow diagram of the study.
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generated from a selection of sample training pixels
for each class provided from ground data.

All texture measures were extracted from the first
principal component of the six wavebands and these
were used to create ‘texture waveband(s)’. Then,
per-pixel ML and ANN classifications were applied.
Evaluation of the utility of these two classifiers and
associated texture measures was based on
classification accuracy.

Variogram coefficients used as texture measures
included (i) an approximation of variogram range,
(ii) the semi-variance at various lags and (iii)
variance. The variogram range was computed using
two approximations; (i) the method of Ramstein &
Raffy (1989) and (ii) the roots of the first derivative
of a third-order polynomial fitted to the variogram.
Both approximations were unstable in the first
approach and this was because the semi-variance at
large lags was computed from too few data and in
the second approach this was because the small
number of pixels in each window restricted the
number of lags for which semi-variance could be
computed. In many instances, very large ranges
were estimated if the variograms did not reach a
limit. Therefore, range was not employed in the
analysis. The texture measures derived from the
average values of semi-variance at lags of 1, 2, 3, 4
and 5 pixels over a moving window.

Table 1. The standard set of user defined variables.

VARIABLES VALUE
Input layer 6-8 units
1.hidden layer | (3x input layer)
Error 0.001
Output layer 30
(amalgamated
to 14)
Learning rate | 0.01
Learning 0.01
momentum
Number of | 2000-3000
cycles
Learning Back
function propagation
Update Topological
function order
Initialisation Randomise
Weight
Transfer Sigmoidal
function function
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* Figure 2. Summary of supervised classification
with MATLAB. ’

5.Accuracy Assessment

Accuracy was expressed by the error matrix,
which represents the degree of agreement between
the classified land cover and observed land cover.
Accuracy results were derived using 1000 random
points for the classified images using per-pixel
classification.

6.Results

The Landsat ETM image of the study area
comprised approximately 120 km by 190 km, of
agriculture, bare ground, grassland, pinus brutia,
pinus nigra, cedrus libani, abies sp., water, wetland,
settlement, snow, bulrush, sand. A supervised ML
classification technique was applied using Erdas
Imagine software for comparison with the ANN
classification (Figure 3).

To indicate the variation on the image, variograms
have been calculated for each land cover classes.

120



4200000 4200000

4170000 =+ 4170000
4140000 4140000
4110000

4110000 (=

4080000

o

20

4200000

4170000

4140000

4110000

4080000

4050000

4200000

4170000

4140000

4110000

4080000

4060000

Figure 3. Maximum likelihood classification (a) and incorporating DEM (b).
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Figure 4. Variograms from Landsat ETM imagery

Sample size of variograms small because of small
land cover parcels. One extreme value has dramatic
effecct on the variogram. However, variogram
provided useful textural information for the land
cover classes. The texture measures derived from the
average values of semi-variance at lags of 1, 2, 3, 4
and 5 pixels over a moving window. These texture
measures provided additional information to the
classifiers where the spectral discrimination of major
land cover classes is subtle such as, settlement and
bare soil (Figure 4).

The size of this window should be related to the
size of objects in the scene. For example, when
classifying a large continuous area of Brazilian rain
forest Miranda and Carr calculated variogram
textural measures over large windows (e.g., 22 by 22
pixels for training) (Miranda et al.,1998). However,

Miranda et al. (1996) suggested that smaller window
sizes were preferable for the -calculation of
variogram texture where land covers were smaller in
area and large windows would increase the risk of
contamination by class mixing. For this reason in
this study a window size of 11 by 11 was used. It is
possible to calculate semi-variance at a lag of 1 pixel
by using smaller window sizes such as 3 by 3,
however computing semi-variance at a lag of 1 pixel
over a larger window provides more robust
measures over a wider range of lags. For each pixel,
average values of semi-variance for lags of 1 to5
pixels were computed and used in the classification
along with spectral data. There is a strong linear
correlation between semi-variance at a lag of 5
pixels and variance and pixels diverting from this
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Figure 5. Relationship between semi-variance and variance for two land cover classes

linear trend tended to be edge pixels or pixels with
extreme values as a result of class mixing (Figure 5).

Both 5 lags of the variogram and additional
variance values over the entire images were
measured for each pixel of the image with a moving
11x11 window on the first principal component
band. These texture measures were used in the same
way as a band within ML (Figure 6).

The ANN classifier utilised more accurately
spectral, spatial and DEM information than ML
classifier did (Figure7). The accuracy results with
user’s and producer’s accuracies and kappa statistics
are given in table 2.

7. Discussins and conclusions

One of the principle findings was that the ANN
classifier utilised texture more effectively than ML.
The ANN was at its most useful where the spectral
properties of the land cover classes was complex and
overlapped in feature space.

For the classification of land cover the variogram
measure of spatial variability with DEM provided a
more accurate classification than did spectral data
alone.

The clouds had two effects on the image. Firstly,
they reduced the reflectance, especially along the
cloud shadow edge. Secondly, clouds increased the
reflectance around the area of cloud shadow. Change
in ground reflectance as a result of clouds led to
misclassification. For example, grassland on the
edge of cloud shadow has been variously classified
as a forest.
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Figure 6. Variogram lags of 5 pixel and variance image (a); classified image incorporating texture measures,
DEM and spectral bands within a maximum likelihood classification (b).
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Figure 7. Classification result using ANN incorporating variance, variogram 5 lags, DEM and spectral

bands.
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